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We rigorously calculate the propagation and scattering of electromagnetic waves by rectangular and random
arrays of dielectric cylinders in a uniform medium. For regular arrays, the band structures are computed and
complete bandgaps are discovered. For random arrays, the phenomenon of wave transmission and scattering is
investigated and compared in two scenarios:(1) Wave propagating through the array of cylinders; this is the
scenario which has been commonly considered in the literature, and(2) wave transmitted from a source located
inside the ensemble. We show that within complete band gaps, results from the two scenarios are similar.
Outside the gaps, however, there could be a distinct difference, that is, wave transmission can be inhibited by
disorders in the first scenario, but such an inhibition may not prevail in the second scenario.
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I. INTRODUCTION

More than two decades have passed since the phenom-
enon of wave localization was explored for propagation of
electromagneticsEMd waves in random media. During this
period, a great body of literature has been generated[1]. And
the interest in the subject continues to grow even further in
recent years[2–10].

With this paper, we present a rigorous study of EM wave
scattering and propagation in media containing many dielec-
tric cylinders. The approach is based upon the self-consistent
theory of multiple scattering[11] and has been used previ-
ously to study acoustic localization in liquid media[9,10]
and acoustic attenuation by rigid cylinders in air.[12] In this
approach, wave propagation is expressed by a set of coupled
exact equations and is solved rigorously. We show that wave
localization can be achieved in ranges of frequencies, coin-
cident with yet wider than the complete bandgap. In particu-
lar, we compare two scenarios:(1) Wave propagating
through arrays array of cylinders, and(2) wave transmitted
from a source located inside the ensemble. We show that
within complete band gaps, results from the two scenarios
are similar, whereas there is a fundamental difference be-
tween the two situations when the frequency is outside the
gap. Moreover, when localized, not only are waves confined
near the transmitting source but a unique collective phenom-
enon emerges, illustrated by a phase diagram in analogy to
the acoustic system[9,10].

II. THE FORMULATION AND SYSTEM

The system considered here is similar to what has been
presented in Ref.[4]. Assume thatN uniform dielectric cyl-
inders of radiusa are placed in parallel in a uniform medium,
perpendicular to thex-y plane. The arrangement can be ei-

ther random or regular. For brevity, we only consider the
case of the E-polarization, i.e., the E-field parallel to the
z-direction. The qualitative features for both E- and
H-polarizations are similar. The scattering and propagation
of EM waves can be solved by using the standard multiple
scattering theory[11]. When the cylinders are arranged in a
regular lattice, the band structure can be computed by the
standard plane wave expansion method.

A unit pulsating line source transmitting monochromatic
waves is placed at a certain position. The scattered wave
from each cylinder is a response to the total incident wave,
which is composed of the direct contribution from the source
and the multiply scattered waves from each of the other cyl-
inders. The response function of a single cylinder is readily
obtained in the form of the partial waves by invoking the
usual boundary conditions across the cylinder surface. The
total wavesEd at any space point is the sum of the direct
wave sE0d from the transmitting source and the scattered
wave from all the cylinders. The normalized field is defined
as T;E/E0; thus the trivial geometrical spreading effect is
eliminated. The normalized intensity of the wave is repre-
sented by the square of the wave fielduTu2.

For the reader’s convenience, we present briefly the gen-
eral multiple scattering theory. Consider thatN straight cyl-
inders of radiusai located atrWi with i =1,2, . . . ,N to form an
array. A line source transmitting monochromatic waves is
placed atrWs. Here we take the standard approach with regard
to the source. That is, the transmission from the source is
calculated from the multiple scattering theory, and assume
that the source is not affected by the surroundings. If some
other sources such as a line of atoms are used, the reaction
between the source and the backscattered waves should be
taken into account.

The scattered wave from thej th cylinder can be written
as

pssrW,rW jd = o
n=−`

`

ipAn
j Hn

s1dskurW − rW judeinfrW−rW j , s1d

wherek is the wavenumber in the medium,Hn
s1d is the nth

order Hankel function of first kind, andfrW−rW j
is the azimuthal
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angle of the vectorrW−rW j relative to the positivex axis. The
total incident wave around theith cylinder si =1,2, . . . ,N; i
Þ jd is the summation of the direct incident wave from the
source and the scattered waves from all other scatterers, can
be expressed as

pin
i srWd = o

n=−`

`

Bn
i JnskurW − rWiudeinfrW−rWi . s2d

In this paper,p stands for the electrical field in the TM mode
and the magnetic field in the TE mode.

The coefficientsAn
i and Bn

i can be solved by expressing
the scattered wavepssrW ,rW jd, for each j Þ i, in terms of the
modes with respect to theith scatterer by the addition theo-
rem for Bessel function. Then the usual boundary conditions
are matched at the surface of each scattering cylinder. This
leads to

Bn
i = Sn

i + o
j=1,jÞi

N

Cn
j ,i , s3d

with

Sn
i = ipH−n

s1dskurWiude−infrWi , s4d

Cn
j ,i = o

l=−`

`

ipAl
jHl−n

s1d skurWi − rW judeisl−ndfrWi−rW j , s5d

and

Bn
i = iptn

i An
i , s6d

wheretn
i are the transfer matrices relating the properties of

the scatterers and the surrounding medium and are given as

tn
i =

Hn
s1dskaidJn8skai/hid − gihiHn

s1d8skaidJnskai/hid
gihiJn8skaidJnskai/hid − JnskaidJn8skai/hid

, s7d

where

hi =
1

Îei
, and gi = Hei for TE waves

1 for TM waves
,

in which ei is the dielectric constant ratio between theith
scatterer and the surrounding medium.

The coefficientsAn
i andBn

j can then be inverted from Eq.
(3). Once the coefficientsAn

i are determined, the transmitted
wave at any spatial point is given by

psrWd = p0srWd + pssrWd

;p0srWd + o
i=1

N

o
n=−`

`

ipAn
i Hn

s1dskurW − rWiudeinfrW−rWi , s8d

wherep0 is the field when no scatterers are present, the sec-
ond termps represents the scattered waves. The transmitted
intensity field is defined asupu2. The normalized intensity is
up/p0u2. In the E-polarization case,p, p0, andps stand for the
electric fieldsE, E0, andEs, respectively.

III. RESULTS AND DISCUSSION

In line with most literature, the following parameters are
used in the computation. The ratio of the dielectric constant
between the cylinders and the hosting medium is 10; the
dielectric constant of the medium is taken as one. The filling
factor b, the fraction of area occupied by the cylinders per
unit area, is 0.28. The radiusa of the cylinders is 0.38 cm.
The lattice constantd of the corresponding square lattice
array of the cylinders is thus about 1.28 cmsd=aÎp /bd. For
convenience, we scale all lengths by the lattice constantd.
The computation is continued until the convergence is
reached.

First, in Fig. 1 we show the band structure of the corre-
sponding square lattice arrangement of the cylinders, ob-
tained by the plane wave method. The wave transmission in
two symmetric directions is also shown. Two complete band-
gap regions are identified and are consistent with the highly
attenuated regions in the transmission computation. These
results are also consistent with that in Fig. 4 of Ref.[4],
thereby verifying our numerical scheme.

To investigate wave transmission properties, two situa-
tions are considered and compared:(1) Wave propagating
through the array of cylinders, labelled hereafter as the
“Outside” situation, and(2) wave transmitted from a source
located inside the ensemble, labelled hereafter as the ‘‘In-
side’’ situation. Both cases are illustrated by Fig. 2. For the
Outside case, all cylinders are randomly or regularly placed
within a rectangular area with lengthL and width W. The
transmitter and receiver are located at some distance from
the two opposite sides of the scattering area. For the Inside
situation, all cylinders are placed either completely randomly
or regularly within a circle of radiusL with the source lo-

FIG. 1. Left panel: The band structures computed by the plane
wave expansion method. Right panel: Here is shown the normalized
transmission log10uTu2 versus frequency; the solid line refers to the
result from the[10] direction propagation, and the dotted line to that
from the [11] direction propagation lines.
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cated at the center and the receiver located outside the scat-
tering cloud.

The frequency response of the averaged logarithmic trans-
mission is presented in Fig. 3 for both Inside and Outside
scenarios. Here we see that the disorder somewhat tends to
enhance transmission within the bandgaps for both scenarios,
while obviously reduces the transmission for all frequencies
outside the gaps in the Outside case. For the Inside situation,
however, the reduction for regions outside the gaps is not
generally obvious, and is only seen near the gap edges. It has

been generally accepted that the transmission reduction in
the Outside scenario indicates the onset of localization. Then
the intuition is that if the transmission reduction is only
caused by the localization effect, it will be implied that the
random system only supports localized states. Then waves
will not be allowed not only to propagate through but also
not to travel when the transmitting source is moved inside
the system. Therefore, we would expect the transmission to
follow an exponential decay with increasing sample size for
both Inside and Outside setups. We would like to examine
this intuition.

Figure 4 presents the results for the random ensemble
averaged transmission and its fluctuation as a function of the
sample size at two frequencies. The sample size is varied by
adjusting the number of the cylinders. For the Outside case,
we have done the following to remove the effect of the width
W. With a fixed sample size(i.e., the lengthL), we plot the
transmission versus width. We find that the transmission
nicely saturates to a certain value in an exponential manner.
We have done for several lengths, and obtained the corre-
sponding saturated value for each length. Then we plot these
values versus sample lengths. In this way, possible effects of
the vertical width may be eliminated. As an example, the
results for 8.64 GHz are shown in Figs. 4(e) and 4(f). For
6.54 GHz, the localization is strong, the width effect dimin-
ishes very quickly when the width increases. Here the plot
for 6.54 GHz has width 26 in the Outside scenario. Note that
the width should not be started at a value too close to zero;
otherwise the variance will be too large, making the results
unstable. The average has been taken for 500 configuration
to ensure the stability.

A few important features are discovered. For the fre-
quency of 6.54 GHz(within the first gap), the transmission
decays exponentially with the sample size for both Outside
and Inside situations with almost the same slope of −1.35.
And inside the localization regime, the absolute value of
the transmission fluctuation is small, as expected from an
earlier work [9,10]. Here we see that within this regime,

FIG. 2. (a) The Outside case: Electromagnetic propagation
through a cloud of dielectric cylinders.(b) The Inside case: Elec-
tromagnetic transmission from a line source located inside the array
of dielectric cylinders. Here Tx denotes the transmitter, and Rx
refers to the receiver.

FIG. 3. Transmission versus frequency for both random and
regular arrays of cylinders:(a) The Outside case with W=6 and
L=10; and(b) the Inside case with L=10. Please refer to Fig. 2 and
the text for the explanation about the Outside and Inside cases.

FIG. 4. The averaged logarithmic transmission and its fluctua-
tion versus the sample size for two frequencies: One is within the
first bandgap and the other is above the first but below the second
gap. The left and center panels refer to the Outside and Inside cases,
respectively. The estimated slopes for the transmission are indicated
in the figure. The right panel shows the effect of widthW and the
plot of the transmission versus lengthL at the extrapolated infinite
width (see the text).
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wave localization can be indeed observed in both Outside
and Inside scenarios, and the localization length, inversely
proportional to the exponential slope, is consistent in the two
situations.

For 8.64 GHz(between the first and the second gaps), the
Outside and Inside scenarios differ significantly. For the Out-
side case the transmission decreases exponentially with a
slope of −0.0612 along the path, but such an exponential
decay is not obvious in the Inside scenario. The result in the
center panel of Fig. 4 clearly shows this point. The fact that
the exponential decay only occurs in one scenario but not in
the other for the same sample sizesLd is itself intriguing and
important. Furthermore, as at this frequency, waves are not
apparently localized in the Inside case and they have a
weaker exponential decay in the Outside case, the transmis-
sion will be more sensitive to the arrangement of the cylin-
ders. Therefore the fluctuation at this frequency is stronger
than that at 6.54 GHz, as evidenced by the results. However,
we note that the ratio between the fluctuation and the trans-
mission at 8.64 GHz could be smaller than that at 6.54 GHz.

Now we discuss a unique feature of EM wave localiza-

tion. The energy flow of EM waves isJW ,EW 3HW . By invok-
ing the Maxwell equations to relate the electrical and mag-
netic fields, we can derive that the time averaged energy flow

is kJWlt;1/Te0
T dtJW ,uEW u2¹u, where the electrical field is

written asEW =eWEuEW ueiu, with eWE denoting the direction,uEW u and
u being the amplitude and the phase respectively. It is clear
that whenu is constant, at least by spatial domains, while

uEW uÞ0, the flow would come to a stop and the energy will be
localized or stored in the space. We assign a unit phase vec-
tor, uW =cosuieWx+sin uieWy to the oscillation phaseui of the
dipoles. HereeWx andeWy are unit vectors in thex andy direc-
tions respectively. These phase vectors are represented by a
phase diagram in thex-y plane.

In Fig. 5, the two-dimensional spatial distribution of EM
energys,uE/E0u2d and the phase vectors of the E-field are
plotted for the two frequencies discussed in Fig. 4. The phase
vectors are located randomly in thex-y plane but to avoid
the positions of the cylinders. The Inside scenario is consid-
ered. Here we clearly see that for 6.54 GHz, the energy is
mainly confined near the source, consistent with Fig. 4. The
phase vectors are orderly oriented. These fully comply with
the above general discussion. Therefore, at this frequency,
EM wave is indeed localized. When we increasingly add an
imaginary part to the dielectric constant, the ordered orien-
tation of the phase vectors will disappear, confirming that the
phase coherence is a unique feature of EM wave localization.
We note from Fig. 5 that near the sample boundary, the phase
vectors start to point to different directions. This is because
the numerical simulation is carried out for a finite sample
size. For a finite system, the energy can leak out at the
boundary, resulting in disappearance of the phase coherence.
When enlarging the sample size, we observe that the area
showing the perfect phase coherence will increase. At
8.64 GHz, however, there is no ordering in the phase vectors
uWsrWd. The phase vectors point to various directions. The en-
ergy distribution is extended in thex-y plane, and no EM
wave localization has been archived yet in this case, in
agreement with what has been described for Fig. 4.

From Fig. 3, the fact that the transmission reduction oc-
curs not only within but also outside the gaps(at areas
around the edges of the gaps) indicates that the transmission
inhibition regions are coincident with the complete bandgaps
to certain extends, and these regions seem wider than the
gaps. In addition, our results from Fig. 4 show that although
the disorders may block waves from propagationthroughthe
medium in the Outside scenario, but this inhibition may not
yet reveal when the source is located inside the 2D medium.
This may imply that beside the localization effect, there are
other possible causes for the exponential decay in the trans-
mission for the Outside scenario, such as the reflection effect
incurred when waves pass across the sample slab, and de-
flection due to the finite width of the slab. To verify this
consideration, we have examined the dependence of the
backscattering intensity versus the sample length and width
for the two frequencies considered in Fig. 4. The intuition is
that the stronger is the backscattering, the weaker will be the
transmission.

Figure 6 shows the backscattering intensity versus the
sample width for two sample sizes in the Outside case. The
frequency is 6.54 GHz. Here we see that as the width is
increased, the backscattering intensity increases and will
nearly exponentially approach a certain value. The width ef-
fect on the backscattering starts to saturate when the width
exceeds 20.

In Fig. 7, we plot the backscattering intensitykuEsu2l ver-
sus sample size for the two frequencies 6.54 and 8.64 GHz in
the Outside case. Here we also see that the backscattering
increases as the sample size(L) increases and then ap-
proaches almost exponentially a certain value for both fre-
quencies; since the width is large enough, the width effect
should not be important, as inferred from Fig. 6. Figure 7
also shows that the backscattering at 6.54 GHz is stronger
than at 8.64 GHz, indicating that the transmission is weaker

FIG. 5. (Color online). The phase diagram and spatial distribu-
tion of electromagnetic energy for two frequencies for one random
configuration. Left panel: The phase diagram for the phase vectors
defined in the text; here the phase of the direct fieldE0 is set to zero.
Right panel: the energy spatial distribution.
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at 6.54 GHz than at 8.64 GHz, in agreement with the results
in Fig. 4.

While the results in Fig. 6 show that the wave deflection
due to the finite width can give rise to the transmission re-
duction, the results in Fig. 7 clearly indicate that the reflec-
tion can also cause the transmission reduction. These results
are fully in agreement with that in Fig. 4, thus verifying that
the reflection and deflection can lead to the transmission re-
duction in the Outside case. The reason why the backscatter-
ing intensity approaches a certain value when the sample
lengthL or width W increases can be understood as follows.
The backscattering intensity is roughly proportional to 1
−kuTu2l, whereT is the normalized transmission. SincekuTu2l
decays exponentially when the width and size increase, as
shown in Fig. 4. Therefore, the backscattering intensity will
exponentially approach a constant for large widths and sizes,
as indicated by Figs. 6 and 7.

We have also examined other frequencies. We will show
the results for two frequencies in particular: one is within the
second gap and the other is above the second gap. The results
are very similar to that shown in Figs. 4 and 5, and we
present the results in Figs. 8 and 9. The transmission has
been averaged over the random configurations of the cylin-
ders. Here, we see that at the frequency of 11.97 GHz
(within the second gap), the transmission decays exponen-
tially with the sample size for both Outside and Inside situ-
ations. And inside the localization regime, the absolute value
of the transmission fluctuation is small. For 14.95 GHz, the
Outside and Inside scenarios differ from each other. For the
Outside case, the transmission decreases exponentially along
the path, but such an exponential decay is not obvious in the

FIG. 6. Backscattering intensitykuEsu2l versus sample width for
two sample size in the Outside case. The source is placed at 0.5
lattice constant away from the left side of the slab, while the re-
ceiver is placed at 3.0 lattice constant away from the left side of the
scattering area. The intensity has not been normalized.

FIG. 7. Backscattering intensitykuEsu2l versus sample size for
the two frequencies 6.54 and 8.64 GHz in the Outside case. The
source is placed at 0.5 lattice constant away from the left side of the
slab, while the receiver is placed at 3.0 lattice constant away from
the left side of the scattering area. The slab width is 26. The inten-
sity has not been normalized.

FIG. 8. The averaged logarithmic transmission and its fluctua-
tion versus the sample size for two frequencies 11.97 and
14.95 GHz: One is within the second bandgap and the other is
above the second. The left and center panels refer to the Outside
and Inside cases, respectively. The estimated slopes for the trans-
mission are indicated in the figure. The right panel shows the effect
of width W and the plot of the transmission versus lengthL at the
extrapolated infinite width(see the text).

FIG. 9. (Color online). The phase diagram and spatial distribu-
tion of electromagnetic energy for two frequencies from Fig. 8 for
one random configuration. Left panel: The phase diagram for the
phase vectors defined in the text; here the phase of the direct field
E0 is set to zero. Right panel: The energy spatial distribution.
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Inside scenario, as shown in the center panel of Fig. 8. As in
Fig. 4, the exponential decay at 11.97 GHz is not caused by
the width effect. The procedure to exclude the width effect
is given above and the result is shown by the right panel of
Fig. 8.

In Fig. 9, the two-dimensional spatial distribution of EM
energys,uE/E0u2d and the phase vectors of the E-field are
plotted for the two frequencies discussed in Fig. 8. The phase
vectors are located randomly in thex-y plane but to avoid
the positions of the cylinders. The Inside scenario is consid-
ered. Here we clearly see that for 11.97 GHz, the energy is
mainly confined near the source, consistent with Fig. 8. The
phase vectors are orderly oriented. Therefore, at this fre-
quency, EM wave is localized. At 14.95 GHz, however, there
is no ordering in the phase vectorsuWsrWd. The phase vectors
point to various directions. The energy distribution is ex-
tended in thex-y plane, and no EM wave localization has
been achieved yet in this case, in agreement with what has
been described for Fig. 8.

IV. SUMMARY

In summary, we have examined some fundamental prob-
lems of EM wave transmission in 2D random media made of

arrays of parallel dielectric cylinders. For the random distri-
bution of cylinders, the transmission is investigated and com-
pared in two scenarios:(1) Wave propagating through the
array of cylinders; this is the scenario which has been com-
monly considered in the literature, and(2) wave transmitted
from a source located inside the ensemble. The results indi-
cate that there is a distinct difference between the two situa-
tions. It is also shown that the region of the inhibited trans-
mission is related to and seems to be wider than the complete
bandgaps. When localized, not only are waves confined near
the transmitting source but a unique collective phenomenon
emerges.
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